HUDSONVILLE PUBLIG SCHOOLS ELEMENTARY GOURSE FRAMEWORK

GOURSE/SUBJEGT
Third Grade Math
5

UNIT PACING Names of units and approximate pacing	LEARNING TARGETS Students will be able to...	STANDARD Which Common Core standards does this address?	ASSESSMENTS Which assessments are given to determine student growth?
Math Expressions Common Core Unit 1: Multiplication and Division with 0-5, 9, and 10 September/October	- I can understand the meaning of multiplication (i.e. that 5×7 means 5 groups of 7). - I can understand the meaning of division (i.e. that $56 / 8$ means that if I have 56 objects I can divide them equally into 8 groups). - I can to solve multiplication and division word problems within 100 by using drawings and equations. - I can find the unknown number in a multiplication or division problem (i.e., 8 $\times ?=48,5=-\div 3,6 \times 6=$?.) - I can use properties of operations to help me multiply and divide. - I can understand that a division problem is an unknown-factor problem. - I can fluently multiply within 100 , using strategies. - I can fluently divide within 100 , using strategies. - I can say or write all multiplication facts o-5s, 9 s and 10 from memory. - I can find and explain patterns in the addition and multiplication tables. - I can multiply the side lengths of a rectangle to find the area. - I can multiply the side lengths of a rectangle to find the area in a real world problem. - I can use tiling to show that the area of a rectangle with side lengths a and $\mathrm{b}+$ c is the sum of $\mathrm{a} \times \mathrm{b}$ and $\mathrm{a} \times \mathrm{c}$. - I can use an area model to show the distributive property.	$\begin{aligned} & \text { 3.OA.1 } \\ & \text { 3.OA.2 } \\ & \text { 3.OA.3 } \\ & \text { 3.OA.4 } \\ & \text { 3.OA.5 } \\ & \text { 3.OA.6 } \\ & \text { 3.OA.7 } \\ & \text { 3.OA.9 } \\ & \text { 3.MD.7b } \\ & \text { 3.MD.7c } \end{aligned}$	Delta Math Screener Unit 1 Quick Quizzes Unit 1 Assessment

Math Expressions
Common Core
Unit 2: Multiplication and Division with 6s, 7s, 8s, and Multiplying with Multiples of 10

October/November

- I can understand the meaning of multiplication (i.e. that 5×7 means 5 groups of 7).
- I can understand the meaning of division (i.e. that $56 / 8$ means that if I have 56 objects I can divide them equally into 8 groups).
- I can to solve multiplication and division word problems within 100 by using drawings and equations.
- I can find the unknown number in a multiplication or division problem (i.e., 8 $\left.\times ?=48,5=_\div 3,6 \times 6=?.\right)$
- I can use properties of operations to help me multiply and divide.
- I can understand that a division problem is an unknown-factor problem.
- I can fluently multiply within 100 , using strategies.
- I can fluently divide within 100 , using strategies.
- I can say or write all multiplication fact though 9s from memory.
- I can solve 2-step word problems with $\mathrm{x}, /,+$, and -.
- I can write a problem using an equation with a letter standing for the unknown.
- I can tell if an answer is reasonable using mental math or estimation.
- I can find and explain patterns in the addition and multiplication tables.
- I can multiply 1-digit whole numbers by multiples of 10 in the range 10-90 using strategies based on place value and properties of operations.
- I can understand that a square with a side length 1 unit, has "one square unit" of area.
- I can use a square unit for measure area.
- I can find the area and perimeter of figures by counting.
- I can find the area of a rectangle by covering it in square tiles and show that the area is the same as it would be if I multiplied the length of two sides (base and height).
- I can multiply the side lengths of a rectangle to find the area.
- I can multiply the side lengths of a rectangle to find the area in a real world problem.

Math Expressions
 Common Core

Unit 6: Polygons,
Perimeter, and Area

January/February

- I can see that all 2-dimensional shapes have area.
- I can understand that a square with a side length 1 unit, has "one square unit" of area.
- I can use a square unit for measure area.
- I can find the area and perimeter of figures by counting.
- I can solve problems involving area and perimeter by counting the units.
- I can find the area of a rectangle by covering it in square tiles and show that the area is the same as it would be if I multiplied the length of two sides (base and height).
- I can multiply the side lengths of a rectangle to find the area.
- I can multiply the side lengths of a rectangle to find the area in a real world problem.
- I can use tiling to show that the area of a rectangle with side lengths a and $b+$ c is the sum of $\mathrm{a} \times \mathrm{b}$ and $\mathrm{a} \times \mathrm{c}$.
- I can use an area model to show the distributive property.
- I can find the area of rectangular shapes by breaking them into several smaller rectangles, finding the area of each smaller rectangle, and adding the areas together.
- I can find the perimeter of polygons in math problems and real world problems.
- I can find the perimeter when I know the side lengths.
- I can find an unknown length of the side of a polygon, given the lengths of other sides and perimeter.
- I can show rectangles with the same perimeter but different areas.
- I can show rectangles with the same area but a different perimeter. I can understand that shapes in different categories may share attributes (e.g., squares, rectangles and rhombuses having four sides).
- I can understand that one category may contain many different shapes with a shared attribute (e.g., quadrilaterals).
- I can recognize rhombuses, rectangles, and squares as quadrilaterals.
- I can draw examples of quadrilaterals that are not rhombuses, rectangles, or squares.
- I can divide a shape into parts that have equal areas.
- I can tell the area of each part using a unit fraction

Math Expressions Common Core Unit 7: Explore Fractions March	- I can understand that a fraction is part of a whole. - I can understand that a fraction is a number on the number line. - I can show fractions on a number line. - I can put unit fractions on a number line by breaking the number line into equal parts. - I can put fractions on a number line by breaking the number line into equal parts. - I can tell 2 fractions are equivalent if they are the same size - I can tell 2 fractions are equivalent if they are at the same point on a number line. - I can find and write equivalent fractions. - I can explain why fractions are equivalent using a fraction model. - I can write whole numbers as fractions. - I can tell when a fraction is equivalent to a whole number. - I can compare two fractions with the same numerator. - I can compare two fractions with the same denominator. - I can explain why one fraction is $<,>,=$ to another using a fraction model. - I can divide a shape into parts that have equal areas. - I can tell the area of each part using a unit fraction.	$\begin{aligned} & \text { 3.NF. } 1 \\ & \text { 3.NF. } 2 \\ & \text { 3.NF.2a } \\ & \text { 3.NF.2b } \\ & \text { 3.NF.3a } \\ & \text { 3.NF.3b } \\ & \text { 3.NF.3c } \\ & \text { 3.NF.3d } \\ & \text { 3.G.2 } \end{aligned}$	Unit 7 Quick Quizzes Unit 7 Assessment
Math Expressions Common Core Unit 4: Multi-digit Addition and Subtraction April	- I can solve 2-step word problems with $\mathrm{x}, /,+$, and -. - I can write a problem using an equation with a letter standing for the unknown. - I can tell if an answer is reasonable using mental math or estimation. - I can find and explain patterns in the addition and multiplication tables. - I can use place value to round whole numbers to the nearest 10 or 100. - I can fluently add within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction. - I can fluently subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.	$\begin{aligned} & \text { 3.OA. } 8 \\ & \text { 3.OA. } 9 \\ & \text { 3.NBT. } 1 \\ & \text { 3.NBT. } 2 \end{aligned}$	Unit 4 Quick Quizzes Unit 4 Assessment
Math Expressions Common Core Unit 5: Write Equations to Solve Word Problems May	- I can to solve multiplication and division word problems within 100 by using drawings and equations. - I can find the unknown number in a multiplication or division problem (i.e., 8 $\times ?=48,5=_\div 3,6 \times 6=$?.) - I can solve 2-step word problems with $\mathrm{x}, /,+$, and -. - I can write a problem using an equation with a letter standing for the unknown. - I can tell if an answer is reasonable using mental math or estimation. - I can use place value to round whole numbers to the nearest 10 or 100. - I can fluently add within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction. - I can fluently subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.	$\begin{aligned} & \text { 3.OA. } 3 \\ & \text { 3.OA. } 4 \\ & \text { 3.OA.8 } \\ & \text { 3.NBT.1 } \\ & \text { 3.NBT.2 } \end{aligned}$	Delta Math Screener Unit 5 Quick Quizzes Unit 5 Assessment

